
Research Statement
ROBERT DICKERSON

My research is focused on finding principled solutions to practical software development challenges.

Drawing from my extensive software industry experience, I approach problems related to building

reliable systems from a formal perspective to develop rigorous solutions. I use insights from this

formal setting to prototype tools and analyses for real-world applications. During my PhD career, I

have considered two problem settings in pursuit of this overarching goal, and my future research

directions will similarly be guided by this philosophy.

RELATIONAL VERIFICATION
During my career as a software engineer, several complex or error-prone tasks I encountered

involved reasoning about multiple program executions. For example, when fixing a bug, only the

buggy behavior should be different in the repaired code; when migrating to a new API, the post-

migration code should behave the same as the pre-migration code; and when writing a multi-user

service, data from one user’s session should not leak to another’s. Formally, these are all examples

of relational verification tasks, which reason about multiple program executions whose states

are required to stand in some relation to each other. My goal is to develop and apply automated

relational verification and analysis techniques to make sure bad things cannot happen in these

kinds of multi-execution situations.

Relational Program Logic. For any kind of program verification, a natural starting point is Hoare-

style program logic. Based on foundational work by Floyd [8] and Hoare [10], program logics use

an axiomatic semantics for a programming language to prove that some logical condition must

hold at the end of a (single) program execution, assuming some condition held at the beginning.

However, as Hoare-style logics are limited to reasoning about single program executions, they

cannot express or prove the kinds of relational properties mentioned above.

Extending Hoare logic to reason about multiple program executions dates back at least 40 years to

work by Francez [9]. The approach was more recently rediscovered and popularized by Nick Benton

in 2004 [3], and several relational program logics have been subsequently proposed. When I started

my PhD studies, existing relational logics dealt with k-safety properties; properties which describe

when no possible executions of 𝑘 programs can “go wrong.” However, several important relational

properties, including those needed for some of the tasks mentioned above, also have liveness
components. Intuitively, liveness properties guarantee that some possible executions must “go right.”

For example, program refinement is a property which asserts the possible behaviors of one program

are a subset of the possible behaviors of another; for all executions of one program, there exists an
execution of another with the same behavior when given the same inputs. Program refinement is

needed to reason about, e.g., the correctness of API migrations, and requires the verifier to establish

the existence of some desirable program executions. Specifically, for any possible execution path

of the refining program, a relational verifier must evince an execution path through the original

program that yields the same result. Other properties of practical interest like nondeterminism and

generalized non-interference (an information security property which says the public result of a

computation using secret information could have been obtained using any other secret) also have

this ∀∃ shape.

Despite the importance of these ∀∃ relational properties in practical verification problems, we

had been missing a Hoare-style logic capable of establishing these properties. To address this gap, I

introduced Relational Hoare Logic with Existentials (RHLE) [6], a program logic capable of proving



2 Robert Dickerson

properties with a ∀∃ shape. Soundness of RHLE’s reasoning rules is formally verified via the Coq

proof assistant. A key insight to my approach was reifying nondeterministic execution choices as

prophecy variables baked into both the reasoning rules and a novel kind of existential specification.

Developing RHLE allowed me to build an automated program verifier capable of handling a diverse

set of ∀∃ properties. The benchmark suite we assembled for the evaluation of RHLE has been used

in the evaluation of subsequent work [4, 11].

Program Alignment. While relational program logics provide powerful frameworks for reasoning

about relational properties, automated verification using these logics requires bespoke tools. An

alternate approach, initially posed by Francez [9] and further developed by Barthe et al. [2], is to

combinemultiple program executions into a product program. A product program is a single program

whose correctness implies the correctness of the original relational property. An advantage of this

approach is that verification of the product program can directly leverage industrial-strength single

program verifiers already in existence. However, constructing the product requires identifying

program alignments, correspondences between subprograms of different executions which simplify

verification. Without these simplifications, the product program can become complex, especially in

its loop invariants, making verification intractable. Finding useful alignments is non-trivial, and

may involve program transformations such as unrolling or duplicating a loop so that it terminates

simultaneously with a corresponding loop in a different execution. Automating the search for

alignments is not generally considered in existing work on this kind of product construction.

By combining a recently-developed algebra for program alignments called BiKAT [1] with

advancements in efficient e-graph manipulation [12], I developed a novel data-driven approach

to identifying promising alignments for product program constructions [5]. The tool I created for

finding these alignments, called KestRel, uses execution traces collected from candidate alignments

to drive a Markov chain Monte Carlo (MCMC) based search for BiKAT alignment rewrites with

desirable semantic properties. We have found KestRel to perform well over a set of benchmark

alignment tasks taken from the literature, including tasks explicitly presented as challenging cases.

SPECIFICATION INFERENCE
Scaling automated reasoning to large, real-world codebases requires modular reasoning; breaking
verification tasks down into smaller, self-contained modules. This helps make reasoning about

a large development tractable while allowing developers to focus more expensive techniques

on subcomponents with the greatest return on verification effort. RHLE, for example, admits

modular reasoning over both safety and liveness properties in the form of quantified method

specifications; universally quantified specifications express overapproximate guarantees about the
behavior of all invocations, while existentially quantified specifications express underapproximate
guarantees about the existence of some desirable behaviors. Users of RHLE are therefore free to

summarize expected behaviors of method calls with these specifications, then separately verify

specific implementations of each method against those specifications.

While modular reasoning is a critical technique for practical verification, it fundamentally

depends on formal specifications on module boundaries which are often not given. This can

be especially problematic for “black-box” libraries, whose source code is unavailable, rapidly

changing, or difficult to analyze. To address this problem, my collaborators and I developed a

data-driven approach to inferring specifications for black-box library code [13]. Given a client of a

black-box library and a safety property over that client, our approach observes concrete program

executions to hypothesize candidate specifications of the library methods. These specifications

are then refined using SMT-provided counterexamples until specifications are found which match

the observed library behavior while being sufficient to verify the given safety property. We used



Research Statement 3

this approach to build an automated verification tool called Elrond, which we found capable of

inferring specifications for a wide range of realistic OCaml data structure libraries. This tool was

recognized with a distinguished artifact award at OOPSLA 2021.

ONGOING AND FUTURE RESEARCH DIRECTIONS
Moving forward, I plan to continue my approach of applying rigorous, principled techniques to

practical software development challenges. I see research as a fundamentally collaborative activity,

and I will actively seek students and colleagues to include in my work. A core component of my

research philosophy is prototyping practical applications of novel theoretical contributions. I believe

this pragmatic aspect of my approach is especially promising ground for finding collaboration with

undergraduate students. When developing RHLE, for example, I worked with an undergraduate to

teach them the mechanics of the relational logic; this student was then able to make a substantive

contribution to the verifier’s Haskell codebase, appearing as a coauthor on the RHLE paper [6]. I

see this experience as a model for including undergraduate students in future research.

Targeting real-world applications in my research often means reasoning over large sets of

possible program behaviors. Prohibitively large search spaces are a common hurdle in program

verification and synthesis, but we may be able to make these approaches tractable by combining

them data-driven techniques. A common thread in my existing research is using observations of

real behavior to drive formal reasoning; KestRel uses execution traces of C programs to inform

cost metrics in an MCMC-based e-graph extraction, and Elrond observes executions to refine

candidate specifications of black-box OCaml APIs. Going forward, I am interested in investigating

data-driven approaches to automated reasoning in other real-world applications, including API

migrations, code merging, and ports of programs between languages.

Another challenge I hope to address is the recent rising interest in employing large-language

models (LLMs) in software engineering [7]. Software developers want to use LLMs as a labor-saving

device, but how can this technology be integrated into software engineering practices in a safe

and principled way? I believe one answer may be formal reasoning over the programs which

LLMs create. As we have no basis for trusting these LLM-generated programs, our faith in their

correctness must come from a rigorous, well-defined foundation. My previous work in relational

reasoning is especially applicable in situations when LLMs are used to synthesize code against

some reference implementation; for example, in optimizing a piece of code or in translating it

from one language to another. In these cases, the reference implementation serves as a natural

specification for the correctness of the LLM’s output, and guaranteeing that correctness constitutes

a relational verification task. To successfully integrate formal reasoning into the LLM pipeline, we

need new techniques for reasoning about and repairing LLM-generated code, as well as tools which

leverage these techniques in real-world settings.

REFERENCES
[1] Antonopoulos, T., Koskinen, E., Le, T. C., Nagasamudram, R., Naumann, D. A., and Ngo, M. An algebra of

alignment for relational verification. Proceedings of the ACM on Programming Languages 7, POPL (2023), 573–603.

[2] Barthe, G., Crespo, J. M., and Kunz, C. Relational verification using product programs. In FM 2011: Formal Methods:
17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings 17 (2011), Springer,

pp. 200–214.

[3] Benton, N. Simple relational correctness proofs for static analyses and program transformations. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (New York, NY, USA, 2004), POPL

’04, ACM, pp. 14–25.

[4] Dardinier, T., Li, A., and Müller, P. Hypra: a deductive program verifier for hyper Hoare logic. Proceedings of the
ACM on Programming Languages 8, OOPSLA (2024).

[5] Dickerson, R., Mukherjee, P., andDelaware, B. Kestrel: Relational verification using e-graphs for program alignment.

arXiv preprint arXiv:2404.08106 (2024).



4 Robert Dickerson

[6] Dickerson, R., Ye, Q., Zhang, M. K., and Delaware, B. RHLE: modular deductive verification of relational ∀∃
properties. In Asian Symposium on Programming Languages and Systems (2022), Springer, pp. 67–87.

[7] Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., and Zhang, J. M. Large language models for

software engineering: Survey and open problems. In 2023 IEEE/ACM International Conference on Software Engineering:
Future of Software Engineering (ICSE-FoSE) (2023), IEEE, pp. 31–53.

[8] Floyd, R. W. Assigning meanings to programs. Proceedings of Symposium on Applied Mathematics 19 (1967), 19–32.
[9] Francez, N. Product properties and their direct verification. Acta informatica 20 (1983), 329–344.
[10] Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.
[11] Niessen, T., and Weissenbacher, G. Finding counterexamples to ∀∃ hyperproperties.

[12] Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., and Panchekha, P. egg: Fast and extensible equality

saturation. Proceedings of the ACM on Programming Languages 5, POPL (2021).

[13] Zhou, Z., Dickerson, R., Delaware, B., and Jagannathan, S. Data-driven abductive inference of library specifications.

Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1–29.


	References

